ELECTROMAGNETIC INDUCTION AND ITS PROPAGATION

A Sequel to the work of Oliver Heaviside

by Eric P. Dollard

CHAPTER ONE

RUDIMENTS OF ELECTROMAGNETIC THEORY

CHAPTER TWO

LINE GEOMETRY IN THE ELECTRIC MEDIUM

CHAPTER THREE

STEINMET & THEORY OF COMPLEX ELECTRIC

CHAPTER FOUR

HEAVISIDE - MAXWELL THEORY OF ELECTRIC PROPAGATION IN ELECTROMAGNETIC SYSTEMS

CHAPTER FOUR (A)

STEINMETZ - KENNELLY ENGINEERING FORMULATION AS APPLIED TO THE LONG LINE PROBLEM

CHAPTER FIVE

HEAVISIDE CEMERAL EQUATION AS APPLIED TO POWER, FORCE, & ENERGY

CHAPTER SIX

ENGINEERING FORMULATION OF FORCE & ENERGY AS APPLIED TO DIRECT CURRENT POWER TRANSMISSION

CHAPTER SEVEN

TRAVELLING AND REFLECTED ELECTROMAGNETIC IMPULSES ON OPEN CIRCUIT LONG LINES

CHAPTER EIGHT

MULTIPLE REFLECTIONS ON MIS-MATCHES

Rudiments of Electromagnetic Theory

	FIG	et (15)
	1	TABLE	OF DERIVED QUANTITIES & MAGNITURES
	6	φ	MAGNETIC INDUCTION, MAXWELL
		Ψ	DIFLECTRIC INDUCTION, COLLONA
	7		
		i	MAGNETO-STATIC POTENTIAL, AMPERE
		L	MAGNETIC INDUCTANCE, HENRY
D	8		
		е	ELECTRO - STATIC POTENTIAL, VOLT
		С	DIELECTRIC CAPACITANCE, FARAD
	9		
		I	DISPLACEMENT CURRENT, AMPERE
		E	ELECTRO-MOTIVE FORCE, VOLT
)		Τ	TIME SDAN, SECOND
			7

Line Geometry in the Electric Medium

FIGURE (26) MAGNETIC DIMENSIONS C.G.S. E.M. UNITS 1) A , CONDUCTOR LEGATH CENTIMETRE 2) S . CONDUCTOR SPACING CENTIMETRE 3) d. CONDUCTOR DIAMETER CENTIMETRE 4) MAGNETIC PERMEABILITY CENTIMETRE SPACE FACTOR NEPER COSH of = 5 cm / cm L MAGNETIC INDUCTANCE, L = 100. X HENRY u = 4 × 10 -4 CENTIMETRE DIELECTRIC DIMENSIONS, C.G.S. E.S. UNITS

- 1) A , CONDUCTOR LENGTH
- 2) & , CONDUCTOR DIAMETRE
- 3) S CONDUCTOR SPACING
- 4) 7, DIFLECTRIC PERMITTIVITY
- 7 5-1, Space Factor PER NEPER

C DIFLECTRIC CAPACITANCE

6

10

FIGURE (2d) PRODUCT OF DIMENSIONS INDUCTANCE - CAPACITANCE PRODUCT $L \cdot C = \left[u \sigma \cdot \lambda \right] \cdot \left[\frac{7}{\sigma} \cdot \lambda \right]$ L·C = un · xª 8 $\frac{1}{c^2} = \frac{t^2}{\lambda^2}$ LIGHT SEC 2 E.S TO E.M PER cm2 ELECTRO - MAGNETIC UNITS 4. 7 cm · 5 Ec 3 PRODUCT OF HENRY & FARAD L.C = un . t = T2 HENRY - FARAD NATURAL TIME [LC] /2 = 7 SECOND

INDUCTANCE TO CAPACITANCE

$$L \div C = \left[u \circ \cdot \lambda \right] \div \left[\frac{\eta}{\sigma} \cdot \lambda \right]$$

E.S. TO E.M.
$$\frac{1}{c^2} = \frac{t^2}{\lambda^2}$$
 HER CM²

ELECTRO-MAGNETIC UNITS

RATIO OF HENRY TO FARAD

NATURAL IMPEDANCE

Steinmetz Theory of Complex Electric Power

FIGURE (33)

	Four	Duni	QUADRANT CO-ORDINATE SYSTEM							
1	2	1%	77	1 4/4	=	1 8/4	3	1'3/4		
į	а	11/4	2	1 5/4	2	19/4	=	1'3/4		
ħ	=	12/4	2	16/4		110/4	=	1'4		
1	=	13/4	=	17/4	-	1"/4	=	115/4		
1	,	Scala.	R (0-0R	DINA	re 53	rsri	EM.		
į	,	MAGN	ETIC	c Co-	ORI	DINATI	- S	YSTEM		
ħ	,	Comp	05/7	Co	-0Z	DINAT	- 5	YSTEM		
1	,	DIELE	CTA	2/c C	0-01	2D/N/47	E	System		
8	j ² ;	= 1h	ħ		h = j k			12 = h		
	i -	-k		h =	+1		1	= -j		

$$\frac{1}{\tau} = 0 \qquad PER SECOND$$

$$e_{o} i_{o} = e_{i} i_{i}$$

 $\gamma = a + jb$

VERSOR

Heaviside-Maxwell Theory of Electric Propagation in Electromagnetic Systems

FIGURE (Ha) VARIATION WITH RESPECT TO SPACE MAGNETIC PROPORTION MAXWELL HENRY i = MAGNETO - STATIC POTENTIAL, AMPERE 2 DIELECTRIC PROPORTION COULOMB / FARAD e = ELECTRO - STATIC POTENTIAL, VOLT ELECTRIC ACTIVITY $e \cdot \dot{z} = \frac{\phi_i \, v_i}{1 \, \text{C}}$ MAXWELL - COULOMB PER HENRY FARAD e • i = WATT

FIGURE (46) VARIATION WITH RESPECT TO TIME ELECTRO - MAGNETIC INDUCTION E = Ø ... maxwell / sec E = ELECTRO - MOTIVE FORCE, VOLT MAGNETO - ELECTRIC INDUCTION I = Y COULOMB / SEC DISPLACEMENT CURRENT, AMPERE ELECTROMAGNETIC ACTIVITY $E \cdot I = \frac{\phi_{i} \cdot \psi_{i}}{+^{2}} \qquad \text{maxwell · coulomb / sec}^{2}$ E · I = P VOLT - AMPERE REACTIVE FIGURE (40-1) SPACE - TIME CROSS PRODUCTS ELECTRO-MAGNETIC ACTIVITY, METALLIC $E - i = \frac{\phi_i \ \phi_{ii}}{L \ \tau}$ MAXWELL . MAXWELL PER HENRY . SECOND E . i = Pm VOLT - AMPERE ELECTRO - STATIC ACTIVITY, DIFLECTRIC I · e = 1/1 /4 COULOMB - COULOMB PER FARAD - SECOND I . e = P. VOLT - AMPERE

23

FIGURE (49) MAXWELL'S EQUATIONS PROPAGATION VELOCITY RELATION $\frac{\lambda^2}{T^2}$ · $\mu \gamma = V^2$ cm² · cm / sec² · cm RATIO OF VELOCITY RELATIONS $\frac{\lambda^2}{T^2} \cdot \frac{\kappa \eta}{c^2} = \frac{V^2}{c^2} \cdot \text{cm}^2 \cdot \text{sec}^2 / \text{sec}^2 \cdot \text{cm}^2$ SUBSTITUTION OF TERMS VOLT-AMPERE PER WATT 26 RE-ARRANGING TERMS OHM-SIEMENS 27 IMPEDANCE & ADMITTANCE E = Z OHM , I = Y SIEMENS 29

FIGURE (4h) MAXWELL'S EQUATIONS SUBSTITUTING TERMS $Z \cdot Y = \frac{V^2}{C^2}$ OHM - SIEMENS PROPAGATION FUNCTION $Z \cdot Y = \gamma^2$ NEPER² PROPAGATION CONSTANT RELATION $\frac{\gamma^2}{\lambda^2} = \beta^2 NEPER^2/cm^2$ 31 PROPAGATION CONSTANT Y = B NEPER/cm 32 MAXWELL'S CO-EFFICIENT ES UNITS TO EM UNITS = 1 SEC2/cm2

MAXWELL'S Equations

FIRST CIRCUITAL EQUATION

$$-\frac{I}{\lambda} = \frac{\varepsilon}{\sigma} \cdot \frac{e}{\tau} \qquad Ampere / cm$$

EM UNITS

34

SECOND CIRCUITAL EQUATION

VOLT / Cm EM UNITS

RATIO OF EQUATIONS

$$\frac{E}{I} = \frac{u\sigma^2}{\epsilon} \cdot \frac{i}{\epsilon}$$

VOLT / AMPERE

34

RE-ARRANGING TERMS

$$\frac{E}{i} = \frac{u\sigma^2}{\epsilon} \cdot \frac{I}{\epsilon}$$

YOLT / AMPERE

PERMITTIVITY EM UNITS

SEC / cm2 cm

FIGURE (4k)

MAXWELL'S EQUATIONS

RE-ARRANGING TERMS

NATURAL IMPEDANCE

$$\begin{bmatrix} Z_m \\ Y_d \end{bmatrix} = Z_c$$
 FOBEL

FIGURE (42) MAXWELL'S EQUATIONS EQUIVILENT FIRST EQUATION $I = \frac{C}{T} \cdot e$ VOLT . FARAD / SEC. EQUIVILENT SECOND EQUATION E = L . i AMPERE - HENRY / SEC DIELECTRIC SUCEPTANCE $\frac{C}{T} = B$ FARAD) SEC 47 MAGNETIC REACTANCE HENRY / SEC - = X TIME SECOND VARIABLE 34

FIGURE (40) DERIVED LINE CHARACTERISTICS IMPEDANCE FUNCTION Za = X OHM/SIEMENS NATURAL IMPEDANCE ZOBEL

Chapter 4 (A)

Steinmetz-Kennelly Engineering Formulation as Applied to the Long Line Problem

FIGURE (4-1)

	STEINMETZ EQUATI	ovs
7	CURRENT EQUAT	10%
	i = ai, + jb I	AMPERE
2	DISPLACEMENT CURR	RENT
	I = e, · Yc	VOLT / ZOBEL
3	NATURAL ADMITTA	NCF
	$\left[\begin{array}{c} Y \\ \overline{Z} \end{array}\right]^{\frac{1}{2}} = Y_{c}$	PER ZOBEL

FIGURE (4-2) STEINMETZ EquATIONS VOLTAGE EQUATION e = ae, + kb E VOLT ELECTRO-MOTIVE FORCE E = i, . Z c AMPERE - ZOBEL NATURAL IMPEDANCE $\left[\begin{array}{c} Z \\ Y \end{array}\right]^{\frac{1}{\lambda}} = Z_c$ ZOBEL

FIGURE (4-3) STEINMETZ EQUATIONS ATTENUATION CONSTANT $\alpha = 0$ NEPER DISTANCE ANGLE δ = βλ RADIAN DISTANCE ANGLE FUNCTION a = cos & NUMERIC 10 DISTANCE ANGLE FUNCTION b = SIN & NUMERIC

```
FIGURE (4-4)
         LINE CHARACTERISTICS
11
            LINE ANGLE
          0 = B A RADIAN
     0 = 2.26 * 10 . 200 RADIAN-MILE / MILE
          0 = 0. 452 RADIAN
12
         LINE ANGLE FUNCTIONS
          a = cos 0 Numeric
          b = SIN 0 NUMERIC
        COS 0. 452 = 0. 900
        SIN 0. 452 7 0.437
13
         NATURAL ADMITTANCE
         Y = 5 × 10 PER ZOBEL
          NATURAL IMPEDANCE
          Z = 2 × 10 2 ZOBEL
                                   41
```

FIGURE (4-5) TERMINAL CONDITIONS 15 RECIEVING END VOLTAGE e, = 60,000 VOLT 16 RECIEVING END CURRENT i, = 200 AMPERE RECIEVING END IMPEDANCE e + i = 300 OHM 18 RECIEVING END ANGLE 8 = ZERO RADIAN

	STEINMETZ EQUATIONS	
/7	DISPLACEMENT CURRENT	
	$I = e_i Y_c$ $I = 6 \times 10^{14} \cdot 5 \times 10^{-3}$	
	I = 300 AMPERI	-
20	ELECTRO-MOTIVE FORCE	
	E = i, Z. E = 200 · 200	
	E = 40,000 YOLT	
2/	CURRENT EQUATION	
	$ai_1 = 0.900 \cdot 200$ $i_2 = 180$ AMPER	E
22	VOLTAGE EQUATION	
	a e, = 0.900 · 60,000	
	ea = 54,000 Vol-	r

FIGURE (4-7) STEINMETZ EQUATIONS CURRENT EQUATION b I = 0.437 . 300 Ib = 131 AMPERE 24 VOLTAGE EQUATION bE = 0,437 · 40,000 E6 = 17,480 VOLT SENDING END CURRENT $z_{\alpha}^{2} + I_{b}^{2} = z_{o}^{2}$ i. = 223 AMPERE $\theta_{i} = TAN^{-1} I_{b} / i_{a} = 0.633$ RADIAN SENDING END VOLTAGE $e_a^2 + E_b^2 = e_o^2$ e. = 56,800 VOLT Be = TAN Eb/ea = 0.309 RADIAN

FIGURE (4-9) SENDING END POWER APPARENT SENDING END POWER Po = eo. to = 12,660 KVA 18 COMPLEX POWER P = a Po + jb . Po P = Po (a+jb) P = Pa + jPb ITVA PHASE $\varphi =$ ANGLE 0.324 RADIAN POWER FACTOR a = cos q NUMERIC 31 INDUCTION FACTOR b = SIN @ NUMERIC FIGURE (4-10) POWER COMPONENTS PHASE ANGLE FUNCTIONS a = cos 0.324 = 0.948 NUMERIC b = SIN 0.324 = 0.3/8 NUMERIC ACTIVE POWER Pa = a Po Pa = 0.948 x 12,660 Pa = 12,000 KILOWATT REACTIVE POWER P6 = 6 P. P = 0.3/8 × 12,660 Pb = 4,000 HILOVAR RECIEVING END POWER P. = e.i. = 12,000 KILOWATT

FIGURE (4-11) ACTIVITY COMPONENTS ELECTROMAGNETIC ACTIVITY $P_2 = E I$ P = 40,000 × 300 A P = 12,000 KVAR MAGNETIC ACTIVITY $P_m = E i$ Pm = 40,000 × 200A Pm = 8,000 KVA 38 DIELECTRIC ACTIVITY P = Ie, Pa = 60,000 × 300 A P. = 18,000 KVA

POWER AND ACTIVITY

e,	RECIEVING END POTENTIAL				
-trox	60,000	60,000	60,000		
i,	RECI	EVING END CUR	RENT		
A SP	200	300	450		
P	RECI	EVING END POL	IER		
83	12,000	/8,000	27,000		

I	DISPLACEMENT CU	RRENT
300 E	300	300
	ELECTRO-MOTIVE	FORCE
40,000	60,000	90,000
į Ž	ELECTROMAGNETIC	Activity
12,000	18,000	27,000
m = 1.5	: 1 m = 1:1	m=1:1.5

1:1

1.5:1

1:1.5

50

PENDING END POSENTIAL

SENDING END POSENTIAL

OF SENDING END POSENTIAL

OF SENDING END POSENTIAL

e.		SENDING END POTENTY	a4
V 0 L T	56,800	60,000	67,000
io		SENDING END CLERENT	
A P	223	300	430
Po		SENDING END POWER	
7	12,660	18,000	28,790
10	m = 1.511	m = 1:1	m = 1:1.5

Pa		Acrive Power	
K	12,000	18,000	27,000
Pg K		REACTIVE POWER	
2	4,000	0,000	4,000
	m = 1.551	m = (1)	m = 131.5

	Pa	OWER & ACTIV	177
Po	SE	NDING END POL	UER
K > A	12,660	18,000	28,970
P,	REC	LIEVING END PO	WER
K	12,000	18,000	27,000
Pa	ELF	CTROMAGNETIC	ACTIVITY
K Y A R	12,000	18,000	27,000
Pm		MAGNETIC ACT	IVITY
K V A	8,000	18,000	40,500
P	חות	ELECTRIC ACTIV	-174
K V A	18,000	18,000	18,000
Pa		ACTIVE POWE	R
ic W	12,000	18,000	27,000
P.		REACTIVE POWE	F/R
ANAK	4,000	0,000	4,000
	1.5:1	1:1	1:43

0			M	
Com	PAR	ATIVE	1.1	AGNITUDES

e,	RECI	EVING END VOLTAGE	
Y017	60,000	60,000	60,000
ea	VECTOR	ELECTRO - STATIC PO	PENTIAL
V 0 4 T	54,000	54,000	54,000
E	ELEC	TRO-MOTIVE FORCE	
v 0 1 T	40,000	60,000	90,000
E,	VECTOR	ELECTRO - MOTIVE	FORCE
V 0 L T	17,500	26,200	39,600

A	Ĭ,		RECIE	VING END CUR	RENT		
IN VECTOR CONDUCTION CURRENT A 180 270 410 I DISPLACEMENT CURRENT A 300 300 300 Ib VECTOR DISPLACEMENT CURRENT A	A						
A 180 270 410 I DISPLACEMENT CURRENT A 300 300 300 Ib VECTOR DISPLACEMENT CURRENT A	9	200		300		450	
TI DISPLACEMENT CURRENT A 300 300 300 Ib VECTOR DISPLACEMENT CURRENT A	In		VECTOR	COMPUCTION	CUZRENT		
I DISPLACEMENT CURRENT A 300 300 300 Ib VECTOR DISPLACEMENT CURRENT A							
A 300 300 300 Ib VECTOR DISPLACEMENT CURRENT	77.47	180		270		410	
To 300 300 300 Ib VECTOR DISPLACEMENT CURRENT A	I		01571	ACEMENT CU	RRENT		
IN VECTOR DISPLACEMENT CURRENT	A						
A	P	300		300		300	
	I _b		VECTOR	DISPLACEMEN	T CURRENT		
	A						
m 131 131 131	m	131		131		131	

Chapter 5

Heaviside General Equation as Applied to Power, Force & Energy

INDUCTION

$$\phi_i = i, L$$

2

IME

$$T_0^{\lambda} = \frac{L C}{Z Y}$$

$$T_d = \frac{C}{Y}$$

3 SUBSTITUTION INTO POWER RELATION

$$P_{o} = \begin{bmatrix} \phi_{i} \psi_{i} \\ \tau^{2} + T_{o}^{2} \end{bmatrix} + j \begin{bmatrix} i_{i} \phi_{i} - e_{i} \psi_{i} \\ T_{m} - T_{d} \end{bmatrix}$$

$$P_0 = \begin{bmatrix} \frac{\varphi_1}{\tau^2} + \frac{\varphi_3}{T_0^2} \end{bmatrix} + j \begin{bmatrix} \frac{W_m}{T_m} - \frac{W_d}{T_d} \end{bmatrix}$$

FIGURE (56) GENERAL EQUATION OF ELECTRIC INDUCTION QUANTITY OF ELECTRIC INDUCTION Q = Q Y MAXWELL COULDMB Pa QUANTITY OF ELECTROMAGNETIC INDUCTION P2 = P, Y, PLANCK Wm ENERGY OF MAGNETIC INDUCTION Wm = i o AMPERE-MAXWELL Wa ENERGY OF DIELECTRIC INDUCTION Wa = e, Y, VOLT · COULOMB

GENERAL EQUATION OF ELECTRIC INDUCTION

8

COMPLEX ELECTRIC POWER

VOLT - AMPERE

VOLT - AMBERE

9

ENERGY AND FORCE TERM

$$P_{b} = \frac{z_{i} \not Q_{ii}}{T_{m}} - \frac{e_{i} \not \gamma_{i}}{T_{d}}$$

VOLT-AMPERE REACTIVE

10

ENERGY RELATIONS

$$P_m = \frac{i_i \phi_n}{T_m}$$

$$P_d = \frac{e_i \ \gamma_i}{T}$$

ENERGY & FORCE RELATIONS

1

MAGNETIC ENERGY

$$W_m = i \phi_n = \underbrace{i \cdot i_n \cdot L}_{2}$$

$$W_m = \frac{1}{2} i^2 L$$
 Jours

DIELECTRIC ENERGY

$$W_{a} = e_{i} \gamma_{ii} = \frac{e_{i} \cdot e_{ii} \cdot C}{2}$$

$$W_d = \frac{1}{2} e^a C$$
 Joule

13

SUBSTITUTION INTO CENERAL EQUATION

$$W = \frac{1}{\lambda} \left[j^{2} L - e^{2} C \right]$$

ENERGY & FORCE RELATIONS

FORCE ON CONDUCTORS, MAGNETIC

$$+f = + \frac{W}{S} \cdot \frac{N}{\sigma}$$
 GRAM

FORCE ON CONDUCTORS, DIELECTRIC

$$+f = -\frac{W}{S} \cdot \frac{N}{\sigma}$$
 GRAM

FORCE ON CONDUCTORS, RESULTANT

$$\pm f = f_m - f_d$$
 GRAM

SPACE FACTOR

18

NEWTON CO-EFFICIENT

ENERGY AND FORCE RELATIONS

10

CANCELLATION OF FORCE

GRAM

$$\frac{f_m}{f_A} = 1$$

UNITY

UNITY

SUBSTITUTION OF PRIOR RELATIONS

$$\frac{2i^2Ls\sigma N}{2e^3Cs\sigma N}=1$$

$$\frac{i^2 L}{e^2 C} = \frac{W_m}{W_A} = 1$$
 UNITY

21

RE-ARRANGING TERMS

$$Z_i^2 = Z_c^2$$

$$Z_1 = Z_c$$

ZOBEL

OHM SIEMENS

60

Chapter 6

Engineering Formulation of Force & Energy as Applied to Direct Current Power Transmission

4.000 × 10 CENTIMETRE

DIELECTRIC FORCE & ENERGY

$$f_d = \frac{W_d}{S} \cdot \frac{N}{\sigma}$$

GRAM / MILE

$$W_{\delta} = \frac{1}{\lambda} e^{\lambda} \cdot \frac{\eta}{\pi e^{\lambda}} \cdot \lambda \qquad \text{Joule/mile}$$

SUBSTITUTION OF TERMS

$$f_d = \frac{1}{\lambda} e^2 \cdot \frac{\eta}{\sigma^3} \frac{N}{\epsilon^3} \cdot \frac{\lambda}{S} GRAM/MILE$$

$$\frac{1}{2} \cdot \frac{m}{\sigma^{3}} \frac{N}{c^{2}} = 8.1545 \times 10^{-11} \frac{\text{cm} \cdot \text{sec}^{3} / \text{cm}^{3}}{\text{cm} \cdot \text{sec} \cdot \text{sec}}$$

$$\frac{\lambda}{s} = 1.609 \times 10^{+2} \frac{\text{cm} / \text{cm}}{\text{cm} \cdot \text{sec}}$$

RESULTING FORCE

1

MAGNETIC FORCE & ENERGY

GRAM/MILE

JOULE / MILE

5

SUBSTITUTION OF TERMS

$$f_m = \frac{1}{2}i^2 \cdot \mu N \cdot \frac{\lambda}{s}$$
 GRAM/MILE

$$\frac{\lambda}{s} = 1.609 \times 10^{+2}$$
 cm/cm

RESULTANT FORCE

	FIGURE	-(69)		
•		FORCE ON LINE CONDUCTORS		
	7	RATIO OF FORCES , 1000	онт	
		$\frac{f_d}{f_m} = \frac{w_d}{w_m} = m^2$	NUMERIC	
•		$\frac{f_d}{f_m} = \frac{13,120}{3280} = 4.0$	GRAM / GRAM	
	8	TOTAL DIFLECTRIC FORCE	=	
		$f_5 = f_4 \cdot \wedge$	GRAM	
		fo = 11,152 × 103	GRAM	
		fo = 24,564	POUND	
	9	TOTAL MAGNETIC FORCE		
		fm = fm · A	GRAM	
		fm = 2788 × 103	GRAM	
		fm = 6141	POUND	
•	10	fm - fp = -18,423	POUND	

	RATIO OF FORCES, 500 OHM		
н			
	$\frac{f_d}{f_m} = \frac{1}{f_m} = m^a$	NumERIC 2	
f _d f _m	= 13,120 = 1.0	UNITY	
12	TOTAL DIELECTRIC FOR	₹ C <i>E</i>	
	$f_o = f_d \cdot \wedge$	GRAM	
	fo = 11.152 × 103	GRAM	
	f ₀ = 24,564	POUND	
13	TOTAL MAGNETIC FOR	C. F	
	f _m = f _m · /	GRAM	
	fm = 11,152 × 103	GRAM	
	fm = 24,564	POUND	
14	fm - fo = ZERO	POUND	

FIGURE (64) FORCE ON LINE CONDUCTORS CONDITION FOR ZERO FORCE fm - fd = 0 GRAM $m^2 = 1$ UNITY SUBSTITUTION OF TERMS $m^2 = \frac{i^2}{e^2} \cdot \frac{L}{C} = 1$ UNITY $\frac{e^2}{i^2} = \frac{L}{C}$ HENRY | FARAD Z, = Zc ZOBEL NATURAL POWER OF LINE VOLT-AMPERE

92

VOLT / ZOBEL

WATT

Chapter 7

Traveling and Reflected Electromagnetic Impulses on Open Circuit Lone Lines

- 1) STEINMETZ, THEORY & CALCULATION OF TRANSIENT ELECTRIC PHENOMENA, BAD EDITION CHAPTER ONE, PAGE -5, AZT 2
- 2) J.J. TOMPSON, RECEPT RESEARCHES IN ELECTRICITY & MACHETISM

 CHAPTER ONE, PAGE-6, ART-9 THRU 14
- 3) O. HEAVISIDE, ELECTROMACHETIC THEORY (EMT)
 CHAPTER ONE, PAGE-109, ART-86
- 4) MAX PLANCK, THEORY OF ELECTRICITY & MAGNETISM
 CHAPTER TWO, PAGE-16, ART-7
- CHAPTER CHE, ALL
 - 6) O. HEAVISIDE, E.M.T.
 PREFACE, PAGE XXVI
 - 7) O. HEAVISIDE, E.M.T.
 PAGE 67, ART 64, \$ PAGE 378 TO 381, ART 200
 - 8) O. HEAVISIDE, E.M.T.
 PAGE -68, ART-65, & PAGE-378 TO 386, ART-201 # 202
 - 9) O. HEAVISIDE, E.M.T.
 PAGE-66, ART-63

- (10) STEINMETZ, ELECTRIC DISCHARGES, WAVES & IMPULSES, 2nd EDITION

 PAGE 10 \$ 11, AZT 7
- (II) O HEAVISIDE, E.M.T. CHAPTER IX

 PAGE 53, ART 473
- (12) E. CUILLEMIN, COMMUNICATION NOTWORKS VOL-2, PAGE-50, ART-7
- (13) O. HEAMSIDE, E.M.T. CHAPTER IV

 PAGE 446, ART-217, & PAGE-449, ART-221, &
 PAGE 44, ART-245 IN CHAPTER VI
- (14) STEINMETZ, THEORY & COLCULATION OF ALTERNATING CLERONIT PHENOMENA, BRIS EDITION CHAPTER VII , PAGE-52 TOS 7
- (15) STEINMETZ, THEORY & COLCULATION OF TRANSIENT ELECTRIC PHENOMENIA 320 EDITION SECTION II, CHAPT ONE, PAGE 291, ART 7
- (16) A, HENNELLY, APRICATION OF HYPEROUS FUNCTIONS TO ELECTRICAL ENGINEERING PROBLEMS CHAPER ONE, PAGE, 1 TO 9, CHAPT VII, PAGE - 96
- (17) A.T.T. PRINCIPLES OF ELECTRICITY APRIED TO TELEPHONE & TELEGRAPH WORK, 1953 EDITION CHAPTER 18, PAGE - 175, ART - 18.6

(18) A.B. HING OT AL, TRANSMISSION LINES ANTENNAS & WAVE GLIDES, LOT EDITION

PARE-6, ART-7, AND ;

PAGE: 48, ART - 7

(19) STEINMETZ, THEGET & CALCULATION OF TEANSIENT ELECTRIC PRENOMENA

SECTION III, CHAPTER II, PAGE 285, ART -3

AMDS

E.T. WHITTAKER, A HISTORY OF THE THECEIES OF AFTHER & ELECTRICITY

CHAPTER VIII, PAGE 282

(20) STEINMETZ, ELECTRIC DISCHARGES, WAVES # IMPLUSES LECTURE VI, PAGE GI, ART-25

(21) E. GULLIMEN, COMMUNICATION METWORK VOL 2 CHAPTER II, PAGE 46, ART -6

A.T.T. PRINCIPLES OF ELECTROIT APRICO TO TOLERHONE & TOLEGRAPH WORK, 1963 EDITION CHAPTER 18, PAGE-156, ART 18.5

(22) E. CULLEMIN, COMMUNICATION NETWORKS, VOL-2 CHAPTER IX, PAGE 305, ART-2

- (23) J. PERZINE, PHYSICS & MATHEMATICS IN ELECTRICAL COMMUNICATION
 - CHAPTER 9, PAGE 141 TO 148 & PAGE 183 TO 154
- (24) STEINMETZ, THEORY & COLUCATION OF TRANSIENT ELECTRIC PHENOMENA BED FORMON CHAPTER II, PAGE 278 to 299, ART-II
- (25) STEINMETZ, ELECTRIC DISCHARGES, WAVES, &
 IMPULSES,
 LECTURE VIII, PAGE 92, ART- 33
- (26) STEINMETZ, THEORY & CALCULATION OF TRANSIENT ELECTRIC PHENOMENA CHAPTER II, PAGE - 296 TO 297, ART -9
- (27) STEINMETZ, THEORY of CALCULATION OF A.C.
 PHENOMENA, BED EDITION

 CHAPTER XII, PAGE 153, ART 103

Chapter 8

Multiple Reflections on Mis-Matched Transmission Lines

FIGURE (12)

MIS-MATCH LOAD AT LINE SEND END

F165 12a - 12i

MULTIPLE REFLECTION

Hi Aaron, today I spoke with Eric and he wanted to see the result at 1500 Ohms load so here it is attached if you could print and send it to him he will be grateful.

Attached please find one result for 1500 Ohms, and another result for a family of curves 500 to 2500 Ohms step 500 Ohms. With this data Eric can finally define the sought after reflection coefficient of this particular system: it represents a 500 Ohm line with an ideal 500V source switched into it and terminated by a resistive load. The slight ringing overshoot is in part to resistance in the switch chosen to be 500u-ohm. I also included the LTSPICE source file in case someone should like to duplicate or change the simulation result attached. LTSPICE is a free electrical simulator anyone an download from its owner (a major semiconductor company).

I still have to do one more set of field plots for Eric: the Electric Field plot for two parallel wires (I think you already sent him the case for the magnetic field).

Thanks,

Adam Griffin

